Selective induction and subcellular distribution of ACONITASE 3 reveal the importance of cytosolic citrate metabolism during lipid mobilization in Arabidopsis.
نویسندگان
چکیده
Arabidopsis thaliana has three genes that encode distinct aconitases (ACO), but little is known about the function of each isoenzyme during plant development. In newly emerged seedlings of Arabidopsis, transcript and protein levels for ACO3 were selectively induced to yield more than 80% of total aconitase activity. Characterization of knockout mutants for each of the three ACOs suggests a major role for only ACO3 in citrate metabolism. The aco3 mutant showed delayed early seedling growth, altered assimilation of [14C]acetate feeding and elevated citrate levels, which were nearly 4-fold greater than in wild-type, aco1 or aco2. However, both ACO1 and ACO2 are active in seedlings as shown by inhibition of aco3 growth by the toxin monofluoroacetate, and altered [14C]acetate assimilation and metabolite levels in aco1 and aco2. Relative levels of fumarate and malate differed between aco2 and aco3, indicating metabolically isolated pools of these metabolites in seedlings. Our inability to enrich ACO protein through mitochondria isolation, and the reduced cytosolic ACO activity of the iron-sulfur centre assembly mutant atm3-1, indicated a cytosolic localization of ACO3 in 3-day-old seedlings. Subsequently, we determined that more than 90% of ACO3 was cytosolic. We conclude that ACO3 is cytosolic in young seedlings and functions in citrate catabolism consistent with the operation of the classic glyoxylate and not direct catabolism of citrate within mitochondria.
منابع مشابه
Iron-shortage-induced increase in citric acid content and reduction of cytosolic aconitase activity in Citrus fruit vesicles and calli.
Aconitase, which catalyses the conversion of citrate into isocitrate, requires Fe for its activity. The yeast and animal enzyme loses its enzymatic activity under Fe shortage and binds to RNA of genes involved in Fe homeostasis, altering their expression. Thus, the enzyme provides a regulatory link between organic acid metabolism and Fe cellular status. Roots and leaves of Fe-deficient plants s...
متن کاملRegulation of aconitase synthesis in Bacillus subtilis: induction, feedback repression, and catabolite repression.
The synthesis of aconitase in Bacillus subtilis wild-type and different citric acid cycle mutants has been studied and the influence of various growth conditions examined. Aconitase is induced by citrate and precursors of citrate and repressed by glutamate. Induction and repression counteract each other, and at equimolar concentrations of citrate and glutamate, aconitase synthesis is unaffected...
متن کاملInhibition of aconitase by nitric oxide leads to induction of the alternative oxidase and to a shift of metabolism towards biosynthesis of amino acids.
Nitric oxide (NO) is a free radical molecule involved in signalling and in hypoxic metabolism. This work used the nitrate reductase double mutant of Arabidopsis thaliana (nia) and studied metabolic profiles, aconitase activity, and alternative oxidase (AOX) capacity and expression under normoxia and hypoxia (1% oxygen) in wild-type and nia plants. The roots of nia plants accumulated very little...
متن کاملEarly copper-induced leakage of K(+) from Arabidopsis seedlings is mediated by ion channels and coupled to citrate efflux.
Copper tolerance among Arabidopsis ecotypes is inversely correlated with long-term K(+) leakage and positively correlated with short-term K(+) leakage (A. Murphy, L. Taiz [1997] New Phytol 136: 211-222). To probe the mechanism of the early phase of K(+) efflux, we tested various channel blockers on copper and peroxide-induced K(+) efflux from seedling roots. The K(+) channel blockers tetraethyl...
متن کاملSelective inhibition of the citrate-to-isocitrate reaction of cytosolic aconitase by phosphomimetic mutation of serine-711.
Iron-regulatory protein 1 (IRP1) is a dual-function protein with mutually exclusive roles as a posttranscriptional regulator of animal-cell iron metabolism or as the cytosolic isoform of the iron-sulfur enzyme aconitase (c-acon). Much effort has focused on the role of IRP1 in posttranscriptional gene regulation and in factors that influence its interconversion with c-acon, but little is known a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 463 2 شماره
صفحات -
تاریخ انتشار 2014